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SUMMARY 

A solution of the phenomenological equations that govern a linear chromato- 
graphic system is found using the complex Fourier transformation. Only terms with 
powers less than three in the Fourier “frequency” w are retained, i.e., the solution 
corresponds to an asymptotic solution, valid for large times. The velocity of the centre 
of mass is unaffected by any deviation from quasi-equilibrium conditions, but an ad- 
ditional term appears in the expression for the apparent diffusion coefficient, in ac- 
cordance with an earlier result obtained by Bak. A definite skewness is also predicted 
for the instantaneous concentration profile within the second-order approximation, 
when the distribution coefficient between the mobile and the stationary phase differs 
from unity. Therefore, in general the asymptotic distribution is not simply a migrating 
Gaussian distribution. The random-walk theory of Giddings and Eyring yields, in 
the asymptotic limit, the same centre of mass velocity and an expression for the ap- 
parent diffusion coefficient identical with the term for deviation from quasi-equili- 
brium in the present theory. Their calculations of individual rate constants for ad- 
sorption and desorption from experimental elution profiles are considered to be in 
error because of the neglect of the quasi-equilibrium term due to eddy diffusion in 
the column. 

INTRODUCTION 

The problem of the form of the elution profile from a chromatographic column 
seems to have received serious attention in only very few theoretical treatments. I 
consider two approaches to be especially important because of their mathematical 
level, and because they partially lead to the same results. One approach is the random- 
walk theory of Giddings and Eyring’. The stochastic reasoning appeared later in a 
somewhat changed form in another paper by Giddings2. This theory neglects the axial 
eddy diffusion in the column and ascribes the. broadening of the chromatographic 
peak solely to the probability distribution of different sequences of adsorption to and 
desorption from the stationary phase. 

Another approach is the phenomenological one based upon Fourier transfor- 
mation of the linearized kinetical equations as suggested by Bak3 in a study primarily 
centred on electrodiffusion phenomena. This treatment includes, eddy diffusion, but 
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the approximations involved are neither very obvious nor very explicitly presented. 
Two other important approaches that should be mentioned are the Laplace transform 
solutions given by Lapidus and Amundson“ and KuEeraS. The solutions they give 
do not, however, appear to be very tractable, 

In this paper, Bak’s method is followed in principle. His result for the apparent 
diffusion coefficient is verified in a second-order approximation, but the asymptotic 
profile in this approximation is not simply a uniformly migrating Gaussian distri- 
bution as anticipated by Bak3. It is a curve with a definite measure of skewness, if the 
distribution coefficient between the stationary and the mobile phase differs from unity. 

The discussion may be clarified by first demonstrating how far a simple quasi- 
equilibrium calculation may carry us towards an understanding of the dynamics of 
peak migration and broadening. _ 

THE QUASI-EQUILIBRIUM SOLUTION 

The starting point is the two simultaneous, partial differential equations de- 
scribing a general chromatographic system: 

ac(o)/at = D. iYc(oyax2 - u’ac(o)/ax - JOE 
ac(s)/at = -I- Jo, (1) 

Jn these equations, c represents the concentrations of the substances subjected to 
chromatography in moles per unit of total column volume in a slice of column centred 
at x with thickness dx. The (0) refers to the mobile phase and the (s) to the stationary 
phase. D is a concentration-independent eddy diffusion coefficient describing the 
spreading out of the zone due to the many possible routes by which the molecules 
can pass thro’ugh the mobile phase. The mean velocity of the mobile phase is u, and 
D may be a function of U. The flux Jo, is the number of moles passing from the mobile 
to the stationary phase per unit of total column volume in the slice. By addition of 
these two equations, we obtain 

ac(tot)/at = D ’ a2c(o)/w - u ~ac(o)/ax (2) 

In the case of quasi-equilibrium, that is 

ds)x,tlc(oL, - K = k/k, (3) 

where K is the adsorption (absorption) coefficient, ?cl the rate constant of adsorption 
(absorption) and /c,, that of desorption, eqn. 2 reduces to a single partial differential 
equation : 

ac(tot)/at = (D/l + K) ’ a2c(tot)/ax2 - (u/l + K) ’ ac(tot)/ax (4) 

From the form of eqn. 4, it is evident that the problem is now an ordinary diffusion- 
convection problem with an apparent diffusion coefficient given by 

D OPP =D/l +K (5) 
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and a centre of mass velocity 

ucm = u/l + K (6) 

It is in fact possible to proceed a little further without explicitly solving the 
simultaneous equations (I). Fig. 1 shows a situation in which the quasi-equilibrium 
assumption fails. The “mobile peak” is here leading and the “stationary peak” is 

Fig. 1. The two moving peaks of a linear chromatographic system. 

lagging behind (of course, both peaks are actually moving). In principle, this must 
always be the case, also in quasi-equilibrium, but in the latter case the difference 
between the peaks may be neglected. Thus, in quasi-equilibrium c(o) and c(s)/K as a 
function of x at a given t can be represented by the same curve. Defining 

AC = c(o) - +) (7) 

we have for a linear or linearized chromatographic system (that is, a chromatographic 
system in which linear exchange kinetics apply) 

When a stationary distribution between the two phases has been reached, then 

(9) 

Thus, the area Al in Fig. 1 equals the area AZ, and have we Al + A3 = A2 + A3 or 

Therefore, in spite of local deviations from quasi-equilibrium, the overall distribution 
between the stationary and the mobile phase is not affected, and the centre of mass 
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velocity will still be given by eqn. 6. The apparent diffusion coefficient will be affected, 
however, as will be shown in the next section. 

THE SECOND-ORDER FOURIER TRANSFORM SOLUTION 

Both the “mobile” and the “stationary”concentration profiles have the proper- 
ty that the concentrations and their derivatives vanish at infinity. Therefore, if U(w, U) 
is the Fourier transform of one’ of the profiles with respect to x 

U(w, 1) = (I /42n) [ c(,v, t) 9 exp (i . w - x) - dx (11) 

Then, by the theorem of partial integration: 

u(ac/ax) = - i-w- Lqo, t) (12) 

and 

u(a%z/ax2) = - cd’ U(w, 1) (13) 

Furthermore, by Leibnitz’s rule for the differentiation of specific integrals: 

v(ac/at) = ci(w, 1) (14) 

a dot denoting differentiation with respect to time. The equations (1) can therefore 
be reduced to two ordinary, simultaneous differential equations by Fourier trans- 
forming both sides of the equations. The result is the linear equations 

with the coefficient matrix 

K= ( ---DC02 - kl -I- i.u-w k2 

/Cl -k2 ) 
Eqn. 15 can be solved for each value of the “frequency” w for suitable initial condi- 
tions, and the solution cL(x, 1), with k = o, s, is found by back-transformation: 

(17) 

(1% 

(16) 

As in the preceding section, we shall be interested only in the total concentration, 
c&v, 1). The explanation is that both the “mobile” and the “stationary” peak are 
eluted, when the peaks suddenly reach the end of the bed of stationary phase, i.e., 
the end of the chromatographic column. The elution profile is therefore the sum of 
the two peaks. Also, in a chromatographic experiment in which the elution flow is 
suddenly stopped and longitudinal movement (apart from slow thermic diffusion) 
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ceases, it will be the total concentration profile that characterizes the chromatographic 
spot. To meet our desire, the variables in eqn. 15 are transformed by 

c ( ) A 
=M-1. ; ( ) L 

with the transformation matrix 

M-1 = (; _;) 

The new kinetic coefficient matrix is 

: K’= M-‘KM 

As will be seen later in this section, 

K;, = +(-&J2 + i*U*UJ) 

(18) 

(19) 

given by the similarity transformation 
S 

(20) 

we shall only use the I,l-element: 

(21) 

The kinetic behaviour is now determined by the eigenvalues of K’, but since eigenvalues 
are invariant in a similarity transformation, they may just as well be determined from 
the characteristic equation of K: 

22 + (Deco2 + kl + k2 - imuow) 9 A+ (D*w’ - i*u*o) l kz = 0 (22) 

As 3, is complex: 

A= a + i*b (23) 

eqn. 22 actually represents two simultaneous equations of second order in a and b: 

a2 - b2 + (Dow2 + kl + k2) l a + u-web f k2*D*02 = 0 

2ab -t- (Dmd + kl + k,) . b - u*w*a - ugcu.k2 = 0 

(24) 

(25) 

For reasons that will be clear at the end of the procedure, we shall be interested in 
solutions to these equations, which are correct for small frequencies CU. For this pur- 
pose, we write 

a = a0 + al-to + a2-& + 0 (03) (26) 

b = bo + blw + b2e& + 0 ~~3) (27) 

Ifweputw= 0 in eqns. 24 and 25, we obtain for b. Z 0 from the second equation 

a0 = - (k, + kdP 

which yields, by insertion in the first equation, 

6; = -(k, + k2)2/4 
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with no real solution # 0. That is, 

a0 = ho = 0 (28) 

We. insert this result in eqn. 24, and because the coefficient of the first power in CLI has 
to be zero separately, then 

and 

al = 0 

Since the least 
terms a2, a-w, 
Eqn. 25 yields 

(29) 

power in a is therefore 22 and the least in b is 2 I, we can drop the 
u-(02 and a~6 in eqns. 24 and 25 in a second-order approximation. 

u.k2w 
b - k2 

=Dw2+kl+ki = kl_,_k2 ‘u’a+o(W3) 
(30) 

Similarily, eqn. 24 yields 

a = (b2 - usb.w - kz- D*co2)/(k, + k,) = -_D,PP. o2 + 0 tw3) (31) 

with the definition 

D kz klk2 
OPP = 

ki -I- kz ’ D + (k, + k2)J ’ ” 
(32) 

This quantity really turns out later to be the apparent diffusion coefficient. Compare 
the first term with the quasi-equilibrium expression in eqn. 5. The second eigenvalue 
A’ = u’ + i. b’ corresponding to the one found above is easily found from the charac- 
teristic equation, because 

a + a’ = --(D-w2 

that is 

+ kl + k2) + i.u*w 

kl A’= ___ Wz ---- . ’ kl+ kz ’ D’co2 + (k, + k2)3 
u2.w - (k, + k,) 

The solution to the (A’, A) equations are formally 

+im kl 
k, -!- k2 ’ “” 

(33) 

wherein the matrix exponential function (defined by the same power series as the 
scalar one) may be simplified by means of Sylvester’s theorem* which again is a direct 
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consequence of the Hamilton-Cayley theorem that every matrix satisfies its own 
characteristic equation 6. Especially in the present case, we have 

exp (K’et) = (A - A’)-**[(K’ - d’*l)*exp (2.2) - (K’ - A*l).exp (a9)] (35) 

Because we are interested only in the stationary solution, we can choose any suitable 
initial conditions provided that they conform to the criteria underlying eqns. 12 and 
13. In addition, we want to focus upon the situation where the peak has become much 
broader than the initial peak. Therefore, we choose 

c(o) = (S/2) *3(x) 

1 

r=O (36) 
c(s) = (S/2) - 6(x) 

where 6(x) is Dirac’s S-function and s is the total number of moles in the two peaks, 
From eqn. 36, we have 

C(t = O)=s/d%andd(t=O)=O (37) 

It should be noticed that d’ has a contribution -(k, + k,) in its real part, and this 
eigenvalue apparently refers to the equilibration of stationarity. In this treatment, we 
shall concern ourselves only with times much greater than that relaxation time: 

t > (/Cl + /c$’ (38) 

and neglect the corresponding term in eqn. 35. Therefore, 

The total concentration profile is given by the back-transformation in eqn. 17 with 
U replaced by C. Insertion of eqns. 21, 30, 31 and 33 in eqn. 39 yields 

with 
( k2. 

k, + k2 
- isu*w-t 

) (40) 

and 

B kl - kz 
= 2(kl + k# ’ u 

The pre-exponential factor in eqn. 40 is now expanded in a power series in o. Con- 

(41) 

sider the diagram in a complex plane given in Fig. 2. The ratio rl :r2 is given by 

1’1 : r2 = 
1 + (B2 -22A)wZ+AZo4 

1 + 4(P -A)co2+4A2c04 
=l+(A+ B2j co2 + 0 (d) 
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Fig. 2. Diagram in a complex plane for the power expansion in eqn. 43. 

For the angles a, and a2, we have 

al = arctan (-Sco/l - A t19) = -s~/(l - A w2) + 0 [sJ~J/(~ _ A w2)3~ 

= --BW + o(OJ’) 

and 

a2 = - 280 + 0 (09) 

Therefore 

COsh-a2)= 1 -+(a, -CC2)2+O[(al-a2)4]= 1 _*.~2~2+0(~3) 

sin (aI - az) = (a, - a2) + 0 [(aI - ad31 = B o + 0 (~3) 

Finally, 

1 -Aco2-i.Bw 
1 -2A02 

-=1+(/i 
- 2i* Bo 

- 2B2) IN2 

When eqn. 43 is inserted into eqn. 40 and the 
obtain 

+ iB0 + 0 (03) 

back-transformation 

Ctot(G 0 = & [/I - S.1, + (A - 2B2)- I,] 

with the definite integrals 

s 

+o, 
1, = exp (-&,, w2*~)~cos (-x’.o) dw 

-0D 

s 

*a0 
I2 = w*exp (--Da,, ~0~~1) sin (-x’mo) do 

-0D 

(43) 

performed, we 

(44) 

(45) 

(46) 
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s +a, 
13 = dm exp ( -Dapp co2.t) cos (-X’WJ) do> (47) 

--a0 

In eqns. 45-47, we have introduced the Galilei-transformed co-ordinate 

x’ = x - kz 
kl f k2 ’ lC’ t 

The integral in eqn. 45 is the well known Gauss-integral, which value is found by 
contour integration to be 

11 = l/rr/D,,,P. t . exp ( -.v’~/~D~~~* c) (49 

The other two integrals can be expressed by the first by means of eqn. 49 with appli- 
cation of the Leibnitz formula: 

(50) 

Differentiation off, (given by eqn. 49) and the integral on the right-hand side of eqn. 
45 by -x’ yields 

I2 = - x’ * I,/2 D,,, * I (51) 

Similarly, differentiation of both sides of eqn. 45 with respect to Da,,,,* tand subsequent 
application of the result in eqn. 51 yields 

13 = (MW,pp~ t) ’ (1 - 2;” , f ) 
flPU 

(52) 

Therefore, the final expression for the total concentration profile is 

G&G 0 = s 
(d276) (7 ’ exp (-~‘~/2 u2) - [(I + A d22Bz ) + 

- 2s’ ++..+ A d’ , x,2 1 (53) 

The measure of peak width Q is given by the usual “‘Einstein formula”: 

d = 2/2Do,,p*t (54) 

To the solution in eqn. 53, the following comments can be made. 
(1) The physical reason for seeking solutions for small w is that the Fourier- 

transformed profile contains the factor exp (-DaPC.co2.t), so that the contribution 
to the back-transformation stems from the smaller o the larger the values of t. 

(2) Eqn. 53 may just as well be regarded as a distribution of times of arrival 
to a certain point x0. If x,, is the end of the column, eqn. 53 is the elution profile. For 
this purpose, we may rewrite eqn. 53 as a time function: 
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Cd.~o, 1) = 
s 1 

’ exp --(so - -- 
Gia,l,,-t 

[ l+K 
* Wl)2/4D,,,~I 1 ’ i-L,y-’ I=0 

with 

450 = 
k2 

’ + (k, ;k,)’ ’ U2 

B kz 
- - ’ /Cl -j- I<2 * u 2D,,, 

L, = (l/20,,,) * (A - 2B2 + Bxo + A ; 2B2 a k,‘f ,< ’ U’XO) 

nP? 2 

L2 = - A - 2B4 . _y; 
4D$, 

(3) Eqn. 53 shows that the migrating peak will be unsymmetrical. With the 
definition of B (eqn. 42) taken into consideration, it is apparent that the skewness will 
be the more significant the greater the value of u and the difference between kl and 
/c2. It can be seen that: 

(a) the front of the instantaneous profile is steeper than the back when K < 1; 
(b) the back of the instantaneous profile is steeper than the front when K > 1. 
The front of the migrating peak is defined as the limb where &/8x < 0, when 

s is chosen in the direction of the movement of the peak. It is possible to give a 
qualitative argument for the direction of skewness found. If K is less than unity, the 
mass contained in the “stationary peak” is less than the mass in the “mobile peak” 
(eqn. 10) and we therefore have a leading peak followed by a smaller lagging peak, 
so that the sum of the two peaks will be tailing in the above-mentioned direction. 

(4) In an experiment in which the sample is applied as a circular spot (ide- 
alized as a two-dimensional Gaussian distribution with the same standard deviation 
in the x and y directions), as is the case in thin-layer chromatography, the B-effect 
will result in comet-shaped spots with the tail directed forwards in the case of K > 1 
and backwards for K c 1. For K = 1, the iso-concentration profiles will be ellipses 
with the major axis in the direction of movement when u is large enough for the 
perturbation term in eqn. 32 to become significant. For the smaller elution velocities, 
the spots will remain as circles, provided that the eddy diffusion coefficient is inde- 
pendent of direction. 

(5) The B-effect will cause all uneven x’ moments of the instantaneous profile 
to be different from zero. The first four moments are 

s 4-m 

MO = c,,,dx’ = s (total number of moles) (55) 
--aD 

s 4-m 

Ml = ~“c,,~dx’ = .P. B (the Galilei co-ordinate of the centre of mass) (56) 
-UY 

s 4-w 

A42 = .y’Z*c,O,dx’ = se [u2 - 2(A - 2B2)] (variance) 
-00 

(57) 

J- 
+a, 

ill3 = Y3. c,,,dx’ = 3s. B. n2 
-aD 

(50 



ELUTION PROFILE IN A LINEAR CHROMATOGRAPHIC SYSTEM 207 

It is important to note that MI is independent of time, i.e., the peak will remain skewed 
for t+w. The Gaussian distribution is therefore not the asymptotic stable solution 
to the chromatographic problem, when the elution velocity is large and K differs 
from unity. Also, the fact that the Galilei co-ordinate of the centre of mass is indepen- 
dent of time is in accordance with the previously stated result that deviations from 
quasi-equilibrium will not affect the velocity of the centre of mass. 

(6) The “instantaneous skewness” due to the B-effect must be sharply distin- 
guished from the “elution skewness” observed in the elution profile. Eqn. 53a shows 
that even in the case when A = B = 0, i.e., the migrating peak is Gaussian, the elu- 
tion profile will be unsymmetrical. During the elution, the Gaussian profile will 
broaden and level out, so that the ascending limb of the elution curve will be steeper 
than the descending limb. This form of the elution curve is also, in fact, the normal 
form when the sample is applied as a small zone in comparison with the extension of 
the peak during elution and the column is long enough for the peak to stabilize. Note 
that it is the median and not the maximum of the elution curve which corresponds to 
the centre of mass of the peak. 

COMPARISON WITH RANDOM-WALK THEORY 

It is also possible to treat the problem of chromatography stochastically from 
a random-walk point of view, as done by Giddings and Eyring’ and Giddings2. They 
assumed linear adsorption kinetics as we have in the preceding sections. They general- 
ly considered a molecule which can be exchanged between two states A and 13: 

(W 

and question for the probability P,,(t,, t2) for a molecule starting in state A and ending 
in the same state after a specific time t to have spend the time tl in state A and t2 = 
t- t1 in state B. By summing over the different adsorption-desorption histories of 
the molecule, they found that 

PAA(tlg 12) = exp (-kItI - k,r,) . +&ztdtz * 41(2/4hkzw2) (60) 

I,(X) is a modified Bessel function of the first kind of order one. By definition’ 
a3 

I,&) = c .&“2& 

2”+2k.k! ‘.F(v + k + 1) (61) 

k=O 

Similarly, for a molecule starting in A and ending in B: 

PA&l, t2) = exp (-kItI - k2t2). k, .3&/4kJczt, t,) (62) 

PO0 and PDA are found by symmetry considerations. When the number of exchanges 
(e.g., adsorptions and desorptions) is large, the arguments of the Bessel functions will 
be so large that the asymptotic expansion8 applies: 

IV(~) + exp (x)/&!ZY, x+00 (63) 
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so that eqns. 60 and 62 reduce to 

These expressions may be regarded as the distribution of c1 for a 
representing the molecule in the mobile phase and B the molecule 

(64) 

(65) 

given t. With A 
in the stationary -. 

phase, this f1 distribution will also be a representation of the instantaneous profile 
(X = u.?J. The expressions may also, however, be regarded as the t2 distribution for 
fixed t1 corresponding to the elution profiles with a column length 1 = u*fI. At first, 
eqns. 64 and 65 appear to be very different from our previous results in eqns. 53 and 
53a. However, at least in one respect there is correspondence. If, for large times, we 
neglect the weak pre-exponential time dependence in eqns. 64 and 65, we have 

P(h) = C - exp [ -(dEr - d&(q)2] 

where C is a normalizing factor and P(f,) is now the tI distribution of the molecule 
regardless of its initial and final states. With t, = x/u, we have 

- P(x) = C’exp [ - (d= - &Zt-/c,x)2/u] 

If we Taylor-expand the argument of the exponential function about the maximum 
value x,,, including only second-order deviations, we find the Gaussian profile9: 

P(x) = C’exp [-(X - x,,,)~/~D,~~ l f] 

D WC2 
‘1131) = (k, + k2j3 ’ u2 

* 

It can be seen that in this approximation the centre of mass velocity + the usual quasi- 
equilibrium expression, and the apparent diffusion coefficient is identical with the 
perturbation term in eqn. 32. 

Giddings and Eyring’ have used their expressions to calculate the individual 
rate constants of adsorption and desorption by fitting these parameters to experi- 
mental elution curves. As an example, they calculated kl and k2 for a diazo dye (Bril- 
liant Scarlet 3R) in a column packed with a mixture of Magnesol and Celiteadsorbents 
and similarly for complexed praseodymium ions under conditions described by some 
other workers. Two years later, Giddings2 wrote, however: “Experimental data 
suitable for comparison with eqns. 16 and 17 (his numbering for eqns. 64 and 65 in 
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the present paper) h.ave not been found”. I would like to close the present theoretical 
contribution by stressing that in my opinion the above calculations are not correct. 
As we have seen, the reason for peak broadening in the Giddings-Eyring theory is 
solely the statistical distribution over different histories of adsorption-desorption 
sequences. The theory neglects the important contribution from eddy diffusion, which 
for example is reflected in the fact that species which do not adsorb at all also spread 
out in time. In a subsequent paper concerning the elution curves from a Sephadex 
G-25 column, it will be seen that both effects contribute to peak broadening, and we 
shall calculate individual rate constants that can be shown independently to be of the 
cork-ect order of magnitude. 
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